		A				
Reg. No.:						
Reg. No.						
0						

Question Paper Code: 53306

B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2019.

Fourth/Sixth Semester

Mechanical Engineering

ME 6404 — THERMAL ENGINEERING

(Common to Mechanical Engineering (Sandwich))

(Regulation 2013)

Time: Three hours

Maximum: 100 marks

(Use of approved thermodynamics refrigeration table is permitted)

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. What are the assumptions made in the air standard analysis?
- 2. Define mean effective pressure and comment its application in internal combustion engines.
- 3. What are homogeneous and heterogeneous mixtures? In Which engines these mixtures are used?
- 4. What are the advantages of air cooling system?
- 5. What is supersaturated flow in steam nozzles?
- 6. Define critical pressure ratio for the nozzle of a steam turbine.
- 7. What is the function of a compressor? What are the different types of compressors?
- 8. What is the need of staging the compression process?
- 9. Show the simple vapour compression cycle on P-h chart.
- 10. Define the terms GSHF and RSHF.

- 11. (a) An air-standard diesel cycle has a compression ratio of 18, and the heat transferred to the working fluid per cycle is 1800 kJ/kg. At the beginning of compression stroke, the pressure is 1 bar and the temperature is 300 K. Calculate:
 - (i) the thermal efficiency,
 - (ii) the mean effective pressure.

Or

- (b) A gas engine operating on the ideal Otto cycle has a compression ratio of 6. The pressure and temperature at the commencement of compression are 1 bar and 27°C. Heat added during the constant volume combustion process is 1170 kJ/kg. Determine the peak pressure and temperature, work output per kg of air and air-standard efficiency. Assume $C_v = 0.717 \text{ kJ/kg}$ and $\gamma = 1.4$ for air.
- 12. (a) Discuss the difference between ideal and actual valve timing diagrams of a petrol engine.

Or

- (b) Explain with neat sketches the various stages of combustion in CI engines.
- 13. (a) The inlet conditions to a steam nozzle are 10 bar and 250°C. The exit pressure is 2 bar. Assuming isentropic expansion and negligible velocity, determine:
 - (i) the throat area
 - (ii) the exit velocity
 - (iii) the exit area of the nozzle.

Or

- (b) Explain the pressure compounded impulse turbine showing pressure and velocity variations along the axis of the turbine.
- 14. (a) A single stage single-acting air compressor running at 1000 rpm delivers air at 25 bar, for this purpose, the induction and free air conditions can be taken as 1.013 bar and 15°C. and the free air delivery as 0.25 m³/min. The clearance volume is 3% of the swept volume and stroke/bore ratio is 1.2:1. Calculate the:
 - (i) bore and stroke
 - (ii) the volumetric efficiency
 - (iii) the indicated power and
 - (iv) the isothermal efficiency of the compressor.

 Take the index compression and expansion as 1.3.

Or

- (b) A three stage compressor is used to air from 1.013 bar to 36 bar. The compression in all stages follows the law PV^{1.25} = C. The temperature of air at the inlet of compressor is 300 K. Neglecting the clearance and assuming perfect intercooling, determine:
 - (i) the indicated power required in kW to deliver 15 m³/min measured at inlet conditions and
 - (ii) intermediate pressures.

Take R = 0.287 kJ/kg K.

15. (a) 28 tonnes of ice from and at 0°C is produced per day in an ammonia refrigerator. The temperature range in the compressor is from 25°C to -15°C. The vapour is dry and saturated at the end of compression and an expansion valve is used. Assuming a co-efficient of performance of 62% of the theoretical, calculate the power required to drive the compressor.

Temperature °C	Enthalpy (kJ/kg)		Entropy of liquid (kJ/kg K)	Entropy of vapour (kJ/kg K)
	Liquid	Vapour		
25	100.04	1319.22	0.3473	4.4852
-15	-54.56	1304.99	-2.1338	5.0585

Take latent heat of ice = 335 kJ/kg.

Or

(b) Explain with neat sketches the simple vapour compression system.

PART C —
$$(1 \times 15 = 15 \text{ marks})$$

16. (a) Air is used as the working fluid in a simple ideal Brayton cycle that has a pressure ratio of 12, a compressor inlet temperature of 300 K, and a turbine temperature of 1000 K. Determine the required mass flow rate of air for a net power output of 70 MW, assuming both the compressor and the turbine have an isentropic efficiency of 85 %.

Oı

- (b) A multistage air compressor compresses air from 1 bar to 40 bar. The maximum temperature in any stage is not to exceed 400 K.
 - (i) If the law of compression for all the stages is $PV^{1.3} = C$, and the initial temperature is 300 K, find the number of stages for the minimum power input.
 - (ii) Find the intermediate pressures for optimum compression as well as the power needed.
 - (iii) What is the heat transfer in each of the intercooler?

